目次

目次	
表次	
圖次	V
中文摘要	VII
英文摘要	IX
第一章 前言	1
第一節 研究緣起及目的	1
第二節 研究內容	2
第三節 預期成果	2
第四節 研究流程	3
第二章 文獻回顧	5
第三章 地質概況及現場踏勘	13
第四章 崩塌量之分析與测量	17
第五章 擋土牆安定分析與試驗	21
第六章 崩塌地危险預警觀测系統之建議	29
第七章 崩塌地整治工法之建議	37
第八章 結論與建議	49
参考文獻	51
附錄一 報告審查會議記錄	53
附錄二 報告審查意見回覆情形	55

表 2-1	地滑與崩塌之相異點	8
表 4-1	斜面之種類與等價摩擦係數µ之值	18
表 5-1	土壤夯實試驗結果	24
表 5-2	土壤直接剪力試驗結果(一)	25
表 5-3	土壤直接剪力試驗結果(二)	26
表 5-4	土壤直接剪力試驗結果(三)	27
表 6-1	安全監測儀器分類表	31
表 6-2	位移速率與邊坡穩定性判斷建議表	31
表 6-3	地盤伸縮計 (expansion gauge) 變動種類一覽表	32
表 6-4	應變計(strain gauge)變動種類一覽表	32
表 6-5	山坡地工程監測參考管理值	33
表 6-6	預警觀測硬體系統人工及自動化測讀優缺點比較表	34
表 6-7	自動化監測之相關問題(摘自日本地盤工程學會,1998)	35
表 7-1	大型落石衝擊試驗條件	41
表 7-2	大型落石衝擊試驗結果	41
表 7-3	鋼綱極限載重試驗條件	43
表 7-4	試驗結果一覽表	43

	1-1	南横梅山口邊坡裸岩區	2
B	1-2	研究流程圖	4
8	2-1	地滑示意圖	9
圖	2-2	表土崩落示意圖	9
B	2-3	表土滑落示意圖	9
	2-4	崩積土崩落示意圖	10
	2-5	崩積土滑落示意圖	10
B	2-6	軟岩崩落示意圖	10
8	2-7	軟岩剝離式崩落示意圖	11
B	2-8	軟岩滑落示意圖	11
	2-9	邊坡破壞時坍土到達距離之實測	11
	2-10)崩坍之發生與雨量之關係圖	12
	3-1	南横梅山口山坡崩塌裸露岩石區下方有竹林區緩衝落	14
		石	
	3-2	因上方風化岩坡及落石的衝擊,因此現場竹林中有大小	14
		約 30cm 之落石散佈跡象	
	3-3	為防範落石搗毀民宅設置隔離護網於擋土牆兩側之現	15
		況	
	3-4	擋土牆採階級式混凝土塊體疊砌而成,似有緩慢突出變:	15
		之現象,在擋土牆兩側有設置隔離護網,卻於其上方區.	
		未有隔離護網措施	
	4-1	梅山村地景地貌航空照相圖 S=1/2500	19
	4-2	梅山村地形圖 S=1/6500	20
B	5-1	擋土牆背填土土樣	22
	5-2	土壤直接剪力試驗儀	22
	5-3	土壤夯實標準試驗模	23
	6-1	邊坡安全監測儀器配置示意圖	36
圖	7-1	柔性落石防護系統正視圖之一例	38

圖	7-2 支柱及基座系统	38
圖	7-3 基座詳圖	38
圖	7-4 煞車消能環之一例	39
圖	7-5 柔性高消能延伸網系統之施工順序一例	39
圖	7-6 柔性網柵落石實驗平面圖	40
圖	7-7 柔性網柵落石實驗側試圖	40
圖	7-8 柔性網柵落石實驗現場	41
圖	7-9 鋼網極限荷重實驗裝置	42
圖	7-10 鋼網極限荷重試驗加載板	42
圖	7-11(a) 菱形鋼網荷重-變位圖	44
圖	7-11(b) 環狀延伸鋼網荷重~變位圖	44
圖	7-12 鋼網強度與單位重量之關係	45
圖	7-13 鋼網之極限變形量與單位重量之關係	45
圖	7-14 鋼網吸收能量與單位重之關係	46
圖	7-15 梅山村邊坡現有護網設施為傳統之菱形網	46

中文摘要

中文摘要

關鍵詞:落石、擋土牆、預警系統、落石防護網

玉山國家公園梅山口為南橫公路進入玉山國家公園之門戶,梅山村(110K)之地質主要為梅山層,由暗灰色至灰黑色頁岩或硬頁岩組成,間夾有 5公分至15公分厚之黃褐色至青灰色中至細粒薄層砂岩互層,梅山村最常見的崩塌型式為岩塊掉落(Rock or debris fall),岩塊的大小可由小至幾公分至2或3公尺直徑的大塊岩石。

原擋土牆採階級式混凝土塊體疊砌而成,似有緩慢突出變形之 現象,經試驗分析結果擋土牆背填土表土下約50cm處之土壤內摩擦 角\$=38.7°,凝聚力C值=2.2 tf/m²,屬極硬實級配良好之稜角狀 砂質粘土,為優良之擋土牆背填土,若須進一步了解是否夾有軟弱 層,須進行地層鑽探與土壤試驗。

對於當地即時災害之預警系統之建置,可於邊坡地層或擋土設施中裝設土壓計、地中傾斜計、土中沈陷計、地盤傾斜計、水位計 及雨量計等等觀測儀器,藉由地層或擋土結構之應力或應變情況, 瞭解潛在落石邊坡及擋土牆設施之安全性,並配合在崩塌區設置即 時錄影預警系統,可提供居民即時預警通報資訊,亦可減少儀器誤 判可能。

在工程上,提供落石防護措施之參考,因有鑑於柔性鋼圈高消 能落石防護網之落石能量吸收能力為傳統菱形網的1.5倍,故建議採 用柔性鋼圈高消能落石防護網配合現地之落石能量加以設置。以梅 山村邊坡岩塊掉落情況判定,建議採用平均直徑約為1.0m之岩塊, 在崩塌區之落石能量為150 t-m,建議設置1,500,000焦耳(Joule)高 消能防護網於梅山村西北側,高度採3.0m,設置長度約為80m。

英文摘要

Mei-San Village at the Southern transit highway is an entrance to the Yue-San National Park. The geological formation mainly consists of shales inter-layered with 50-150mm thick sandstones. The rock or debris fall is considered to be a primary form of slope failure in this area, and the sizes of rock fall range between a few centimeters and two to three meters in diameter.

The soil retaining wall at Mei-San Village consisting of large concrete block facing was found under gradual deformations. Soil sampling from about 0.5m-deep of the backfill showed good physical and mechanical properties with a coulomb's failure envelope of c=2.2 tf/m² and ϕ =38.7°. To investigate the mechanism of the wall deformation, further studies using soil boring, soil testing and slope stability analysis is necessary.

To establish a warning system for the possible slope failure disaster, monitoring devices, such as : inclinometers, water level recorders, rainfall recorders should be installed, and a real-time monitoring system can also be used to increase the accuracy of the disaster warning system.

A rock fall energy absorption net which has 1.5 times of energy absorption capacity than conventional rock-capturing nets is suggested for this area to prevent possible damage of the rock fall. It is suggested to use a rock fall with 1m in diameter for the design of the rock retention net. An average rock fall energy of 150 t-m or 1,500,000 Joule, and a 3.0m-high and 80m-long rock retention net are also suggested.

Key Words: Rock fall, Retaining wall, Warning system, Rock fall retention net

第一章 前言

第一章 前言

第一節 研究緣起及目的

玉山國家公園梅山口為南橫公路進入玉山國家公園之門戶,南 部橫貫公路自台 20號 109 公里梅山口至 146 公里埡口段,屬於玉山 國家公園範圍內,海拔由 1014 公尺一直上升至埡口大關山隧道海拔 2700 公尺,沿線具有中、高海拔豐富多樣的森林植被及高山地形景 觀。然而南橫公路沿線岩質鬆脆,每遇颱風、豪雨、地震及梅雨季, 易致坍坊落石,基於上述原由,對於南橫梅山村口山坡崩塌裸露岩 石區,如何預防潛移崩落情事,以維護當地居民安全,為玉山國家 公園當前重要課題。

本區域所裸露主要岩性為經過變質作用的變質砂岩、硬頁岩、 板岩和千枚岩構成,間夾有凸鏡狀石灰岩體和火成岩體。梅山村 (110K)位於梅山層主要由暗灰色至灰黑色頁岩或硬頁岩組成,間 夾有 5 公分至 15 公分厚之黃褐色至青灰色中至細粒薄層砂岩互 層。而經前人研究顯示(賴典章,1988)南橫公路梅山至啞口約 37 公里長沿線公路邊坡統計共 74處崩塌地。主要的崩塌型態為岩塊掉 落,佔 35.1%,其次為圓弧型滑動,佔 14.9%。二者的複合型式佔 12.1%,總計為 62.1%。而梅山村邊坡為岩塊掉落(Rock or debris fall),是本區域最常見的崩塌型式,是由於鬆動的岩塊因日久其支 撐點受到風化作用或外來震動的破壞而產生岩塊直接的跳落或掉 落,岩塊的大小可由小至幾公分至 2 或 3 公尺直徑的大塊岩石。整 治建議為 1.護坡護網、明隧道、岩栓,2.噴漿,或 3.植生等三種方 式,目前已有設立擋土牆及隔離護坡。

本計畫擬經由現地野外勘查與分析,綜合研判該區地質潛在危險區,提出監測預警系統之規劃方向,以為未來預警系統建置之參考, 並提供當地即時災害之預防及土石流潛勢之資訊。

1

第二節 研究內容

一、調查範圍: 南橫梅山口及其周邊地區(圖1-1)。

二、調查項目:

1.地形特徵之調查分析

2.岩層構造組態之調查分析

3. 邊坡運動型態之調查分析

4.邊坡運動之影響評估

三、監測預警系統之規劃建議。

圖 1-1 南横梅山口邊坡裸岩區

第三節 預期成果

一、解釋南橫梅山口邊坡崩塌裸露岩石區之潛移崩落情勢。。
 二、究明該地區邊坡崩塌型態與潛勢。

第一章 前言

三、提供預防之道與預警系統之規劃建議。

第四節 研究流程

本研究之研究流程如下(圖1-1):

- 一、相關文獻及地形圖、地質圖之蒐集與分析。
- 二、進行野外構造地質調查。
- 三、室內分析與解釋該區邊坡潛勢狀況。
- 四、每月提報該區邊坡潛勢分析。
- 五、撰寫報告並提出有邊坡潛勢預警系統之規劃建議。

圖 1-2 研究流程圖

第二章 文獻回顧

第二章 文獻回顧

崩塌地可由於地滑(Landslide)或崩塌(Collapse)而產生。地滑一般指規模較大,移動速度較緩之邊坡破壞現象,而崩塌則指規模較小,突發性之移動速度較大之邊坡破壞現象。日本地盤工學會(1986) 將地滑與崩塌現象之相異點整理於表 2-1。

按小出(1955)之分類,地滑可分為三種:

一、第三紀層之地滑

二、破碎带地滑

三、溫泉帶地滑

渡正亮等人(1976)將地滑以更為一般化的形式分為下列四大 類,以利地滑防止對策工法之考量:

- 一、岩盤地滑
- 二、風化岩地滑
- 三、崩積土地滑

四、粘質土地滑

地滑之一般形態,可以圖 2-1 表示,其各部份之慣用名稱亦示於圖 2-1。影響地滑發生的因子有:

5

- 一、地下水
- 二、地震
- 三、火山作用
- 四、河川侵蝕
- 五、人為開發

按 Varnes(1958)之分類,崩塌可分為下列三種形式:

- ー、崩落(Fall)
- 二、滑動(Slide)
- 三、流動(Flow)

崩塌以崩落及滑落佔大多數,少數邊坡在含水量極高之狀態 下,或崩落後運動過程中水的供給充份時,可能發生流動性破壞。 流動破壞一般亦稱為土石流,非為本研究之範圍,因此本報告中不 再說明。崩落、滑落中,與二仁溪上游地區地形、地質狀況關係較 密切的有:

- 一、表土崩落:如圖 2-2 所示。
- 二、表土滑落:如圖 2-3 所示。
- 三、崩積土崩落:如圖 2-4 所示。
- 四、崩積土滑落:如圖 2-5 所示。
- 五、軟岩(第三紀層)崩落:如圖 2-6 所示。

六、軟岩(第三紀層)表面剝離式之崩落:如圖 2-7 所示。

七、軟岩(第三紀層)層之滑落:如圖 2-8 所示。

日本建設省土木研究所(1979)根據發生於日本全國 1969-1979 年間之崩塌案例,歸納崩塌之特性如下:

- 一、崩塌多為基盤岩層上表土或崩積土之崩壞,與該邊坡基盤岩層
 之地質無明顯的關聯。
- 二、容易發生崩塌之地點通常不為明顯之陵線成山谷,而為外表平 整無大變化之邊坡。
- 三、岩坡發生崩塌可能受層狀構造、斷層、層埋面之方向、位置與 地下水之影響。坍方之規模愈大,其影響愈顯著。
- 四、坍土到達距離與邊坡高度之比值為防災之重要指標,0.2-0.39 為最常發生之範圍,0.6以下佔全體之72%,全體之94%在1.4 以下。總防災之觀點,若保持3.0以上,則不受崩塌之影響(圖 2-9)。
- 五、崩塌之發生與崩塌前一天為止之二星期內之累積雨量及當日 雨量關係較密切(圖 2-10)。

國內對於南橫公路沿線邊坡崩塌研究顯示(賴典章,1988)南 橫公路梅山至啞口約37公里長沿線公路邊坡統計共74處崩塌地。 主要的崩塌型態為岩塊掉落,佔35.1%,其次為圓弧型滑動,佔14.9 %。二者的複合型式佔12.1%,總計為62.1%。而梅山村邊坡為岩 塊掉落(Rock or debris fall),是本區域最常見的崩塌型式,是由於 鬆動的岩塊因日久其支撐點受到風化作用或外來震動的破壞而產生 岩塊直接的跳落或掉落,岩塊的大小可由小至幾公分至2或3公尺 直徑的大塊岩石。

7

	地滑	崩塌
地質	發生於特定之地質或地質構造之區	與地質無明顯的關聯
	域	
土質	主要由粘土構成滑動面	砂質土中亦常發生
地形	發生於 5-20°之緩傾斜面,其上部常	常發生於 30°以上之陡坡地
	為平台狀	
活動狀況	有持續、再發之特性	為突發性
移動速度	一般為 0.01-10mm/天,速度小	一般大於 10mm/天,速度極
		快
土體	滑動土體擾動較小,常保持其原狀	土體移動過程擾動大
誘因	地下水异高為最大影響因子	降雨,特別是降雨強度為最
		大影響因子
規模	介於 1-100ha	土方量 1000m ³ 以下
徵兆	發生前有龜裂、沈陷、隆起、地下	幾無徵兆,常為突發性
	水位變動等現象	

表 2-1 地滑與崩塌之相異點

第二章 文獻回顧

圖 2-1 地滑示意圖

圖 2-2 表土崩落示意圖

岩盘

圖2-3 表土滑落示意圖

圖 2-4 崩積土崩落示意圖

圖 2-5 崩積土滑落示意圖

圖 2-6 軟岩崩落示意圖

第二章 文獻回顧

圖 2-7 軟岩剝離式崩落示意圖

圖 2-8 軟岩滑落示意圖

坍土到達距離/邊坡高

圖 2-9 邊坡破壞時坍土到達距離之實測值

當日雨量

圖 2-10 崩坍之發生與兩量之關係圖

第三章 地質概況及現場踏勘

本研究區域所裸露主要岩性為經過變質作用的變質砂岩、硬頁 岩、板岩和千枚岩構成,間夾有凸鏡狀石灰岩體和火成岩體。梅山 村(110K) 位於梅山層主要由暗灰色至灰黑色頁岩或硬頁岩組成, 間夾有 5 公分至 15 公分厚之黃褐色至青灰色中至細粒薄層砂岩互 層。而經前人研究顯示(賴典章,1988) 南橫公路梅山至啞口約 37 公里長沿線公路邊坡統計共 74處崩塌地。主要的崩塌型態為岩塊掉 落,佔 35.1%,其次為圓弧型滑動,佔 14.9%。二者的複合型式佔 12.1%,總計為 62.1%。而梅山村邊坡為岩塊掉落(Rock or debris fall),是本區域最常見的崩塌型式,是由於鬆動的岩塊因日久其支 撐點受到風化作用或外來震動的破壞而產生岩塊直接的跳落或掉 落,岩塊的大小可由小至幾公分至 2 或 3 公尺直徑的大塊岩石。

在 93 年 9 月 21 日做第一次現場勘查發現並整理其邊坡問題可歸納為下列四點:

- 一、南橫梅山口山坡崩塌裸露岩石區下方有竹林區緩衝落 石,目前可減緩落石直接傷害民宅。(如圖 3-1)
- 二、因上方風化岩坡及落石的衝擊,因此現場竹林中有大小約 30cm 之落石散佈跡象。(如圖 3-2)
- 三、為進一步防範落石搗毀民宅於擋土牆兩側已設置隔離護網,但擋土牆上方區段未有隔離護網措施,將造成防護之漏洞。(如圖 3-3、圖 3-4)
- 四、 擋土牆採階級式混凝土塊體疊砌而成, 似有緩慢突出變形 之現象。(如圖 3-4)

13

圖 3-1 南横梅山口山坡崩塌裸露岩石區下方有竹林區緩衝落石

圖 3-2 因上方風化岩坡及落石的衝擊,因此現場竹林中有大小約 30cm 之落石散佈跡象

圖 3-3 為防範落石搗毀民宅設置隔離護網於擋土牆兩側之現況

圖 3-4 擋土牆採階級式混凝土塊體疊砌而成,似有緩慢突出變形之現象, 在擋土牆兩側有設置隔離護網,卻於其上方區段未有隔離護網措施

整治建議:

- 一、須再檢討擋土牆寬度、厚度、背填土及排水狀況,並進行
 邊坡穩定分析。
- 二、須再檢討現有落石位置與隔離護網的有效性、並探討設置 消能網之可行性。
- 三、為了解邊坡落石狀況及其衝擊能量,建議開闢一條會勘路 徑,深入了解 潛在崩落岩塊量及墜落之勢能。

第四章 崩塌量之分析與测量

本研究岩石崩塌區域,由圖 4-1 及圖 4-2 評估並配合 93 年 11 月 2 日做第二次現場勘查與測量,估算得崩塌裸露區面積=4600m², 崩塌裸露區岩表厚度=1.2m,估計崩落區與民宅距離=166m,岩石墜 落之地形坡度為 54°,建議落石防護長度(黃線)約為 80m。

而經前人研究顯示(賴典章,1988)梅山村邊坡為岩塊掉落 (Rock or debris fall),是本區域最常見的崩塌型式,由於鬆動的岩 塊因日久其支撐點受到風化作用或外來震動的破壞而產生岩塊直接 的跳落或掉落,岩塊的大小可由小至幾公分至2或3公尺直徑的大 塊岩石。且由本研究於2004年11月2日所做之現場勘查,於竹林 中亦有大小約30cm之落石散佈跡象。

此時,若以平均落石直徑 D 為 1.0m 的情況,並將落石之單位 重設為 γ=2.6t/m³時,可計算落石重量:

落石 體積 V=1/6*π*D³

落石重量 W=2.6*V=2.6*1/6*π*1.0³=1.36 t

在此,因落石大小不同而有所不同之能量係利用下式。(參考社團法人日本道路協會,1983,落石對策便覽)計算,並檢核可能之落下高度。

 $E = (1+\beta) (1-\mu/\tan\theta) *W*H$

其中 $(1+\beta)(1-\mu/\tan\theta) \leq 1.0$

上式中,

E: 落石之動能(t-m)

W: 落石之重量(t)

H:落石之落下高度(m)
β:迴轉能量係數(可視為 0.1)
μ:等價摩擦係數
θ:斜面坡度(°)

分類	落石及斜面的特性	設計µ值	由實驗而得μ的 範圍
A	硬岩、圓形; 凹凸小,無殘幹	0.05	0~0.1
В	軟岩、方形; 凹凸中~大,無殘幹	0.15	0.11~0.2
С	土砂/礫石、圓形~方形; 凹凸小~中,無殘幹	0.25	0.21~0.3
D	礫石、方形; 凹凸大~中,殘幹無~有	0.35	0.31~

表 4-1 斜面之種類與等價摩擦係數µ之值:

由於梅山村邊坡大致係屬 D 類,故μ=0.35。

斜面坡度及高度係依據各斷面之不同加以設定。

崩塌區:A-A斷面之斜面坡度為54°,高度134.3m。

 $E = (1+\beta) (1-\mu/\tan\theta) *W*H$

=1.1* (1-0.35/tan54°) *1.36*134.3=149.82 t-m

圖 4-1 梅山村地景地貌航空照相圖 S=1/2500

圖 4-2 梅山村地形圖 S=1/6500

第五章 擋土牆安定分析與試驗

關於階級式混凝土塊體疊砌而成之擋土牆安定分析,其擋土牆 型式為階級式混凝土塊係由混凝土塊單塊體(長 1.0m*寬 1.0m*高 1.0m*厚 0.2m)上空內填土石之上開口箱體,並分 8 層疊砌而成,擋 土牆高度 8m,全長 25m。

經 93 年 9 月 21 日第一次現場勘查發現擋土牆採階級式混凝土 塊體疊砌而成,似有緩慢突出變形之現象,並於 93 年 11 月 2 日做 第二次現場勘查時做擋土牆頂背填土之取樣,於表土下約 50cm 處 之土樣 (如圖 5-1),做土壤性質之試驗分析:包括土壤夯實試驗及 直接剪力試驗 (如圖 5-2、5-3)。

試驗結果:土壤經夯實試驗,求得最大乾密度 $\gamma_{d(max)}=1.91g/cm^3$ 及最佳含水量 O.M.C=13.36%,工地現場取 90%之壓密度,其 $\gamma_d=1.72g/cm^3$ 相對之含水量 w=8.01%。並由此土壤狀況進行土壤直接 剪力試驗,求得土壤內摩擦角 $\phi=38.7$,凝聚力 C 值=2.2t/m²,(如 表 5-1、表 5-2、表 5-3 及表 5-4)。

擋土牆背填土表土下 50cm 處之土壤有達到土壤內摩擦角φ= 38.7,凝聚力 C 值=2.2t/m²之土壤性質係性質,若須進一步了解是 否夾有軟弱層,須進行地層鑽探與土壤試驗,了解整個土層結構做 研判,因非本計畫經費所能配合,故須另行計畫做探討研究。

圖 5-1 擋土牆背填土土樣

圖 5-2 土壤直接剪力試驗儀

第五章 擋土牆安定分析與試驗

圖 5-3 土壤夯實標準試驗模

表 5-1 土壤夯實試驗結果:

	梅山	10	土層	マ	.之	土	壤	夯	實	試	驗
--	----	----	----	---	----	---	---	---	---	---	---

試驗次數	1	2	3	4	5	6	7	8
一、濕土單位重:(筒圈高H=11.6 cm 體積=929.37 cm ³)								
加水量 (cm3)	70	100	150	200	250	300	350	400
濕土重+筒圈重 (kg)	6.39	6.46	6.56	6.62	6.76	6.76	6.72	6.66
筒圈重 (kg)	4.74	4.74	4.74	4.74	4.74	4.74	4.74	4.74
濕土重 (kg)	1.65	1.72	1.82	1.88	2.02	2.02	1.98	1.92
濕土單位重 (g/cm3)	1.78	1.85	1.96	2.02	2.17	2.17	2.13	2.07
二、含水量:								
蒸發皿號碼	1	2	3	4	5	6	7	8
濕土重+蒸發皿重(g)	177	181.8	178	222	203.8	279.36	349.26	515
乾土重+蒸發皿重(g)	170.2	174	170.14	208.92	189.63	254.18	311.29	451.12
水淨重 (g)	6.8	7.8	7.86	13.08	14.17	25.18	37.97	63.88
蒸發皿重 (g)	78	76.3	78.3	84.46	75.55	79.4	80.93	106.4
土粒淨重重 (g)	92.2	97.7	91.84	124.46	114.08	174.78	230.36	344.72
含水量 (%)	7.38	7.98	8.56	10.51	12.42	14.41	16.48	18.53
乾土單位重 (g/cm3)	1.65	1.71	1.80	1.83	1.93	1.90	1.83	1.74

表 5-2 土壤直接剪力試驗結果 (一):

直接剪力試驗

日期:	93年12月10日	試驗者:	郭丁元
-----	-----------	------	-----

試樣: 砂質粘土通過#4篩夯實度達90%(γ_d=1.72g/cm³; w=8.01%)之重模土樣

取土地點: 玉山國家公園南橫梅山口山坡崩塌裸露岩石區下方擋土牆之背填土

壓力環編號NO._____1 率定係數 126.11 kg/mm(1.2611kg/每格)

剪力盒內直徑 <u>6</u> cm 面積 <u>28.27</u> cm2 盒內土壤厚度 <u>2.6cm</u>

試驗次數		1	2	3			
含水量							
試驗前土樣濕土重	(g)	138.2	138.2	138.2			
試驗後土樣濕土重	(g)	155.23	157.71	155.47			
乾土重	(g)	132.2	132.2	132.2			
水淨重	(g)	23.03	25.51	23.27			
試驗前含水量	(%)	8.01	8.01	8.01			
試驗後含水量	(%)	17.42	19.3	17.6			

乖 杳	載 重		40	ko			
重重	應力).35	kg/cm ²			
贾 4年 175 181	水玉士山	山正士山	チャナク	赤古士ム	さよわ図	前ヵ	前面わ
杀视时间	測微計讀數	小十万间 變位	<u> 重重</u> の 同 測 微 計 請 數	业 <u>重力</u> 同 變位	 讀數	S S	労應刀
(分一秒)		(mm)		(mm)		(kg)	(kg/cm ²)
4"	3	0.03	0	0	2	2.522	0.089
10"	8	0.08	0.2	0.002	3	3.783	0.134
20"	11	0.11	0.6	0.006	4.5	5.675	0.201
30"	31	0.31	1	0.01	5	6.306	0.223
40"	45	0.45	1.1	0.011	6	7.567	0.268
50"	62	0.62	1.2	0.012	7	8.828	0.312
1' 00"	81	0.81	1.2	0.012	8	10.089	0.357
1' 10"	100	1	1.3	0.013	10	12.611	0.446
1' 20"	118	1.18	1.4	0.014	9.5	11.980	0.424
1' 40"	150	1.5	1.5	0.015	9.5	11.980	0.424
2'00"	187	1.87	1.6	0.016	9	11.350	0.401
2' 20"	225	2.25	1.7	0.017	9.5	11.980	0.424
(二) 直	接剪力試驗訂	2.錄表:					
垂直	載重		95	kg			
垂直	應力).85	kg/cm ²			
罗林时时	水巫士ム	水亚士스	壬古士ム	金古士ム	キャロ	前よ	前面上
杀預时间	水牛カ回 測微計讀數	水牛方向	単直の回 測微計讀數	<u> </u>	<u> 一 可 刃 圏 </u>	努力 S	労應刀
(分一秒)		(mm)		(mm)		(kg)	(kg/cm ²)
4"	3	0.03	0	0	1	1.261	0.045
10"	17	0.17	0	0	7	8.828	0.312
20"	24	0.24	0	0	10	12.611	0.446
30"	42	0.42	0.3	0.003	11	13.872	0.491
40"	60	0.6	0.5	0.005	14	17.655	0.625
50"	75	0.75	1	0.01	18	22.700	0.803
1' 00"	93	0.93	1.2	0.012	18	22.700	0.803
1' 10"	105	1.05	1.2	0.012	16	20.178	0.714
1' 20"	117	1.17	1.4	0.014	16	20.178	0.714
1' 40"	138	1.38	1.5	0.015	15	18.917	0.669
2'00"	168	1.68	1.6	0.016	16	20.178	0.714
(三)直	接剪力試驗訂	2錄表:					
壶 直	载 重		150	kg			
 	<u>麻</u> 力	1	35	kg/cm ²			
<u>با</u> ح							
累積時間	水平方向	水平方向	垂直方向	垂直方向	計力圈	剪力	剪應力
(A _ 44)	測微計讀數	變位	測微計讀數	變位	讀數	S (lerr)	(leg/am ²)
(分一秒)	F	(mm)	4	(mm)		(Kg)	(kg/cm)
4"	5 44	0.05	4	0.04	3	3./83	0.134
10"	17	0.11	6	0.06	11	19.047	0.491
20"	17	0.17	8	0.08	10	18.917	0.669
30"	38	0.38	12	0.12	18	22.700	1.000
40"	6U 9 <i>5</i>	0.6	19	0.15	23	29.005	1.026
11 00"	00	0.85	18	0.18	20	31.328	1.115
1.40"	104	1.04	25	0.25	28	35.311	1.249
1' 10"	125	1.25	30	0.3	28	35.311	1.249
1' 20"	140	1.4	34	0.34	27	34.050	1.204
1' 40"	170	1./	38	0.38	28	35.311	1.249
2' 00"	215	2.15	44	0.44	26	32.789	1.160
2' 20"	255	2.55	50	0.5	26	32.789	1.160
2' 40"	290	2.9	55	0.55	25	31.528	1.115
	305	2 25	50	0.59	26	32 789	1 1 1 6 0

表 5-3 土壤直接剪力試驗結果 (二):

表 5-4 土壤直接剪力試驗結果 (三):

水	戶方	向	繜	位	萴	廘	h	曲	線
×1 •	· //	1-1	×	11	71	1	//	ш.,	w//

試 驗	次 數	1	2	3
垂直應力	(kg/cm2)	0.35	0.85	1.35
最大剪應力	(kg/cm2)	0.446	0.803	1.249

第六章 崩塌地危險預警觀測系統之建議

邊坡落石之安全監測與預警系統係於邊坡地層或擋土設施中裝 設觀測儀器,藉由地層或擋土結構之應力或應變情況,瞭解邊坡落 石之安全性及擋土牆設施之功能性,以作為後續警戒與防護之參考。

預警觀測系統設置基準

邊坡安全監測儀器基本上可分為地層穩定性監測、地下水位監 測及擋土結構物監測等三類,其中,地層穩定性監測使用之監測儀 器主要包括傾斜觀測管、地滑計及沈陷觀測點;地下水位監測使用 之監測儀器主要包括水位觀測井及水壓計;擋土結構物監測使用之 監測儀器主要包括土壓計、鋼筋計、地錨荷重計、裂縫計、傾斜管 及傾度盤。此外,亦可分為應力監測、應變監測、傾度監測、水文 監測及土石流監測等。一般常用之坡地社區安全監測儀器如表 6-1 所示。

預警觀測指標

長久以來,邊坡穩定分析之中有關坡地「安全」與否的指標, 皆是以各邊坡之參數經由圖表查核或分析計算後,獲得該邊坡之「安 全係數」值,以此值來作為邊坡是否安全的判斷依據。但是自然環 境瞬息萬變,隨時都有可能出現各種突發狀況,而這些狀況不是傳 統的圖表法中所可顯現出來的;因此,隨著科技的進步,各種監測 儀器蓬勃發展,也隨之出現了許多監測上的安全判定指標。

坡地社區安全監測的指標,目前多著重在監測儀器的管理值之 訂定,而這些管理值之資料多來自日本或本土案例之相關研究,常 見之指標如下:

 日本地滑對策技術協會,(位移速率與邊坡穩定性判斷建議表), (1978),(如表 6-2)。

29

- 藤原明敏,地盤伸縮計及應變計變動種類表,(1970),(如表 6-3、 表 6-4)。
- 3. 內政部營建署,山坡地工程監測參考管理值,(2000),(如表 6-5)。
- 4. 攝錄影預警系統

歐美地區除設置安全監測系統外,部份潛在危險度較高區域 亦設置即時攝錄影預警系統,配合 24 小時專人監看,可提供居 民即時預警通報資訊,減少儀器誤判可能。

上述各種監測儀器管理值大略的訂出了可能發生危險的狀況, 但並未明確指出對應的變位時,邊坡的安全係數值之大小,只能概 略判斷此時邊坡是否可能在滑動,對於邊坡本身性質的差異性也沒 有加以區分,一般來說只能算是一個經驗上的數據,不一定適用在 所有地區。因此,預警系統除上述建議值外,各住宅區邊坡應分別 透過邊坡穩定、水理計算等專業工程師分析,個別建立預警系統之 管理值。

此外,破壞時間的預測,在災害來臨前之預防處置是最重要的 一環;在監測儀器設置之後,除了隨時掌握邊坡之變化外,能及時 在災變發生之前進行民眾疏散、先期處置,才可將破壞減至最低。

預警觀測系統計讀方式

預警觀測硬體系統之測讀可分為人工及自動化方式。人工測讀 顧名思義即監測儀器裝置後,以人工定期量取讀數;自動化測讀則 以記錄器定時量取監測儀器讀數,透過現地無人基地站,以GPS 天 線、電話線或網路,傳輸至遠端監視系統進行研判。二者之優缺點 比較如表 6-6。由於經濟效益之考量,且自動化之相關問題並不易 克服(詳表 6-7),故邊坡落石自動化預警系統相關研究目前尚未很成 熟,國內邊坡落石相對於坡地社區測讀模式仍以人工量測為主。唯 自動化監測最大的好處,是可提供「即時」(real time)防災預警系統, 使坡地社區獲得更具時效之安全保障。故在經費及現況許可下,自 動化監測仍是一個值得考量之方向。

监测分类	監測儀器	監測內容
	土壓計	監測擋土牆或地下結構物土壓力大小
應力監測	鋼筋計	擋土設施構造之應力分佈狀態
	地錨荷重計	檢測地錨荷重大小及其變化
	裂縫計	監測結構物及地表裂縫大小及變化
	地滑計	針對大區域地表邊坡滑動情形之監測
座 総 	地中傾斜計	主要用於監測土岩層邊坡和擋土牆之側向
悲愛监测		變位量與滑動深度,可分插入式及定置式
	土中沈陷計	主要用於大填方區域沈陷量之監測
	地表變位計	固定於地表之鋼釘等物,主要對地表做三
		向度監測
傾度監測	地盤傾斜計	主要用來監測地表傾斜之儀器,可檢測地
		表滑動方向
	結構物傾斜計	主要用於監測房屋或擋土牆之傾斜程度
	水位計	觀測地下水位變化情形
水文監測	水壓計	觀測地下水壓變化情形
	雨量計	用於監測常時或暴雨時之雨量,以便瞭解
		其與原始設計條件之異同,或做為土石流
		預警監測

表 6-1 安全監測儀器分類表

表 6-2 位移速率與邊坡穩定性判斷建議表

變動種類	日變位量	月變位量	一定方向的	活動性判斷
	(mm)	(mm)	累積傾向	
緊急變動	20以上	500以上	非常顯著	急速崩壞
確定變動	1以上	10 以上	顯著	活潑運動中
准確定變動	0.1 以上	2.0 以上	略顯著	緩慢運動中
潛在變動	0.02以上	0.5 以上	稍稍有	有待繼續觀測

			xpansion gauge	》 女 助 性 关	说 見不	
變動種類	日變位量	月變位量	一定方向的	活動性	型態	摘要
	(mm)	(mm)	累積傾向	判斷	(T、C、斷續)	
緊急戀動	20以上	500以上	非常顯著	急速	Т	崩壞型、
小心文功		500 M T		崩壞	1	泥流型
確定變動	1以上	10 以上	顯著	活潑運	T&C	表層滑動、
F C X M		10	MY - A	動中	1000	深層滑動
淮碇定縂動	01 WF	2012 -	败顯茎	緩慢運	Т ` С&	粘土滑動、
干准尺叉功	0.1	2.0	T My 1	動中	斷續變動	崖錐滑動
溉左絲動	0.02 12 1	0512 -	船船右	有待繼	T & C	
旧任发到	0.02 以上	0.5 KL	19 19 79	續觀測	Iac	

表 6-3 地盤伸縮計 (expansion gauge) 變動種類一覽表

表 6-4 應變計(strain gauge)變動種類一覽表

	日變動	累積變動	變重	動型態	滑面存在的	
變動種類	絕對值 (µ)	絕對值 (µ)	累積 傾向	變動狀態	地形、地質 之可能性	綜合判定
確定變動	100 以上	500 以上	顯著	累積變動	有	確定滑動
準確定變動	100 以上	1000 以上	稍顯著	累積變動	有	準確定 滑動
潛在變動	100 以下	100 以上	稍有	累積 斷 續 剛 歸	有	潛在滑動
異常變動	100 以上	100以上	無	斷續 攪亂 回歸	無	地滑以外 的原因

觀測項目	需考量之因素	預警值	警戒值	行動值			
地層移動	1. 位移量	2.0mm/月	2.~10.0mm/月	>10.0mm/月			
	2. 位移速率	(有一定位移傾向)	(有一定位移傾向)	(有一定位移傾向)			
地下水位	設計地下水位	設計水位					
地下水壓	設計地下水壓	設計水壓	—	—			
建物倾斜量	容許傾斜量	1/500	1/360	1/250			
裂縫增量	容許裂縫寬度	1mm					
地面沈陷	容許沈陷量	沈陷量不影響結					
		構之使用性					
建物(鄰房)	容許沈陷量	沈陷量不影響結					
沈陷		構之使用性					
	差異沈陷量	1/500	1/360	1/250			
擋土牆及抗滑	位移量						
樁變位							
註:1. 不同之坡地依其特性訂定管理值							
2. 各觀測值必須已排除誤差及干擾因素後再用作判讀							

表 6-5 山坡地工程監測參考管理值

測讀模式	優點	缺點
	1. 建構及維護成本低	1. 定期量測,期間發生狀況
	2. 量測時工程師可順便踏勘現	無法應變
人工測讀	場,以供資料佐證	2. 氣候不佳時,難以立即赴
	3. 國內應用在坡地經驗豐富	現場量測
	4. 門檻較底, 有能力之承商較多	3. 易受人為誤差影響
		4. 對於基地範圍大或需密
		集量測者,成本可能較高
	1. 測讀快速	1. 建構成本及維護成本均
	2. 可提供「即時」(real time)防	高
人 毛 川 川 法	災預警系統	2. 無法完全取代工程師判
目動化測讀	3. 減少人為誤差,提高量測精度	斷,需輔以工程師現場勘
	4. 量測不受氣候影響	查佐證
	5. 可量測不易到達位置之測點	3. 系統較複雜,需專業人員
	6. 存檔格式統一,利於資料處理	維護及研判結果
	7. 對於基地範圍大或需密集量	4. 國內應用在坡地經驗較
	測者,經濟效益可能較高	少

表 6-6 預警觀測硬體系統人工及自動化測讀優缺點比較表

監測儀器	自動化之相關問題
傾度盤、傾斜儀	• 用來觀測地滑之傾斜感應器,必須具有1秒
	之精度,其造價高昂,構造複雜。
	 感應器量測之溫度補償問題尚未解決。
設置式傾斜觀測管	• 用來觀測地滑之傾斜感應器,必須具有1秒
	之精度,其造價高昂,構造複雜。
	• 要查出滑動面的位置時,必須要有多組感應
	器密集的設置。
	• 若地層之移動量太大時,則感應器恐將無法
	回收。
插入式傾斜觀測管	• 懸吊傾斜儀的支架需有可自行升降傾斜儀的
	功能。除了機械構造的複雜和高價位外,在
	野外操作時如何確保支架的穩定性,也是相
	當困難的。
管式應變計	• 因使用多組應變計,故在量測時須利用多頻
	道的計算器。
	 需使用專用的數據擷取器和電流整流器。
地滑計	• 藉由選取適當之感應器和捲動裝置,可提供
	更便宜且高感度之監測。
地層中伸縮儀	• 藉由選取適當之感應器和捲動裝置,可提供
	更便宜且高感度之監測。
	• 需選擇比較不受地表沈陷影響的位置,以免
	影響量測值。如不設在急陡坡面或層狀傾斜
	面。

表 6-7 自動化監測之相關問題(摘自日本地盤工程學會, 1998)

圖 6-1 邊坡安全監測儀器配置示意圖

第七章 崩塌地整治工法之建議

對於落石規模較大之邊坡,以傳統之剛性落石護欄或以全面性 掛網噴漿方式來對應時,常導致龐大工程費,且在一只受損後維修 之施工性及經濟性不佳。柔性高消能環狀防護網原為第二次世界大 戰中使用於海中防止潛艇入侵之用途,應用於落石防災工程中具有 高消能、高延展之特性。日本於1997年正式導入本工法於邊坡防災 之領域。行政與技術推廣上主要由「環狀網(Ring-Net)落石吸收柵工 法研究會」;實驗與理論方面主要由日本鐵道技術研究所之防災技術 研究部推動。本工法與傳統之落石防止柵不同點在於:

- (1) 全體由系統化之元件組合而成,對於其行為預測之可靠性較傳統之 RC 結構來得高。
- (2)主要構造由環狀編結鋼網、鋼絞線、煞車消能裝置、型鋼支柱(含基座)及地錨等構成。其中之環狀編結鋼網及裝置於鋼絞線上之 煞車消能裝置具有大量之變形與吸收落石衝擊能量之作用。
- (3) 在型鋼支柱與基座之間設置極限耐剪力已知之轉動軸承,使支 柱本體在落石之衝力作用下不承受過度之彎矩,且在承受設計 剪力以上之荷重時,軸承處發生破壞。這可避免在過大之荷重 下,系統發生不可預期之扭曲變形,導致事後維修之困難。
- (4)由於系統之穩定性主要來自鋼絞線及地錨,因此型鋼支柱之基 座為小型、輕量化之設施。
- (5)由於落石之直接撞擊而損毀之構件,可以局部替換更新方式, 達到維修之經濟性。

系統配置與施工方法

本消能防護系統之基本構造如圖 7-1、7-2 所示。本系統主要由: (1)環狀鋼網,(2)型鋼支柱,(3)鉸接(Hinge)基座,(4)項、底部支撐 鋼索,(5)頂、底部側面鋼索,(6)頂部背拉鋼索,(7)地錨,(8)煞車 消能環等八大部份所組成。其中之(3)鉸接基座及(8)煞車消能環詳圖 分別示於圖 7-3、7-4。本消能防護系統之施工概略步驟示於圖 7-5。

圖 7-2 支柱及基座系統

圖 7-4 煞車消能環之一例

圖 7-5 柔性高消能延伸網系統之施工順序一例

圖 7-6 柔性網柵落石實驗平面圖

圖 7-7 柔性網柵落石實驗側試圖

大型試驗

- 一、落石衝擊試驗:試驗網柵之配置狀況如圖 7-6、7-7。實驗之實 況示於圖 7-8。本實驗共進行了十二次大石落下試驗,其試驗 條件歸納於表 7-1。本試驗中,以張力計量測鋼索之張力,並 以高速數位相機記錄糸統受大石衝擊前後之變形。試驗結果歸 納於表 7-2。該表透露下列之訊息:
 - (1)由於煞車消能裝置之作用,可以減低鋼索在落石衝擊下之張力。
 - (2)所有構件及鋼索皆能適當地發揮功用,即使有部份構件直接 遭受衝擊而損壞時,整體系統仍然可發揮落石防護功能。

玉山國家公園南橫梅山口山坡崩塌裸露岩石區監測預警系統之規劃

圖 7-8 柔性網柵落石實驗現場

試驗編號	試驗條件							
	錘 重(tf)	落下高(m)	衝擊能量(tf·m)	衝擊位置				
1	2.45	12.2	30	BE				
2	2.45	20.0	49	B 🖻				
3	2.19	18.3	40	B E				
4	1.14	17.8	20	C E				
5-1	1.14	26.3	30	B E				
5-2	0.73	13.7	10	B E				
5-3	0.81	24.7	20	A E				
6	5.02	18.0	90	B E				
7-1	2.19	13.7	30	B E				
7-2	1.14	17.6	20	頂部背接索 2-2				
7-3	1.14	17.6	20	支柱 No.2				
7-4	2.45	24.5	60	B				

表 7-1 大型落石衝擊試驗條件

表 7-2 大型落石衝擊試驗結果

試驗編號	損壞構件	地 錨 最 大 張 力 (tf)					
		No.1	No.2	No.2-2	No.3	No.4	
1	支柱 No.1 底部承載板損壞	7.3	8.5	_	10.1	4.5	
2	無	8.2	8.5	_	12.0	8.1	
3	支柱 No.1 底部承載板損壞	7.7	7.9	—	8.5	5.5	
4	無	3.3	2.3	_	6.5	8.5	
5-1	支柱 No.3, No.4 底部承載板損壞	5.0	5.7	_	7.7	4.1	
5-2	無	3.9	6.7	_	1.6	2.0	
5-3	無	8.2	7.6	_	0.8	2.3	
6	底部支撐鋼索1條破壞,支柱 No.1 之絞接處螺栓斷裂,	11.9	11.6	—	10.9	12.7	
	支柱 No.2 承載板變形,支柱承載板 No.3 損壞						
7-1	無	6.0	6.4	6.0	7.8	4.6	
7-2	頂部背拉鋼索 14-2 斷裂	3.0	4.0	14.4	2.2	1.5	
7-3	支柱 No.2 變形	3.2	7.5	0.5	0.6	1.0	
7-4	支柱 No.2 大變形、螺栓斷裂	10.9	7.8	0.2	14.9	10.5	

二、鋼網之載重~變形試驗:本試驗由一靜力油壓加載系統(圖 7-9) 及一圓弧形之加載板(圖 7-10)所構成。總計進行 30 次加載試驗,分別對傳統之鋼線網(菱形)及環狀鋼網(又稱為延伸網)之各 種不同孔徑及鋼材直徑進行荷重~變形行為之探討,其材料及 試驗條件與結果歸納於表 7-3、7-4。

圖 7-9 鋼網極限荷重實驗裝置

圖 7-10 鋼網極限荷重試驗加載板

Case	No.	種類	孔徑	線徑	材質	自重	格一	子數	開口尺	寸(mm)	網尺	寸(m)
			(mm)	(mm)	*	(N)	長	寬	툱	寬	툱	寬
1	1		50	3.2	GS	149	41	24	80	70	2.87	1.92
	2					149	41	25			2.87	2.00
	3					155	41	25			2.87	2.00
2	1	菱	100	3.2	GS	73	18	13	140	160	2.88	1.82
	2					74	18	14			2.88	1.96
	3					73	18	14			2.88	1.96
3	1	形	150	3.2	GS	53	12	10	205	240	2.88	2.05
	2					53	12	10			2.88	2.05
	3					51	12	10			2.88	2.05
4	1		50	2.0	GS	55	41	24	80	70	2.87	1.92
	2	網				59	41	25			2.87	2.00
	3	(10 -]				56	41	25			2.87	2.00
5	1		50	4.0	GS	227	39	27	74	74	2.89	2.00
	2					225	41	25			3.03	1.85
	3					227	39	27			2.89	2.00
21	1		50	2.0	GH	59	41	25	80	70	2.87	2.00
	2					59	41	25			2.87	2.00
	3					59	41	25			2.87	2.00
41	1		40	3.2	GS	204	41	29	67.5	71	2.91	1.96
	2					202	41	29			2.91	1.96
	3	延				204	41	29			2.91	1.96
43	1		30	3.2	GS	235	61	29	67.5	47	2.87	1.96
	2					233	61	29			2.87	1.96
	3	伸				233	61	29			2.87	1.96
44	1	.,	30	2.6	GS	154	58	30	67.5	50	2.90	2.03
	2					154	59	29			2.95	1.96
	3	網				154	59	29			2.95	1.96
45	1	~~~	40	2.6	GS	137	42	30	67.5	70	2.94	2.03
	2					130	41	29			2.87	1.96
	3					129	41	29			2.87	1.96

表 7-3 鋼綱極限載重試驗條件

*材質:GS 鍍鋅鐵線(S)型,GH:鍍鋅鐵線(H型),根據 JIS G3547

表 7-4 試驗結果一覽表

Case	NO.1	孔徑 (mm)	線徑 (mm)	材質	自 重 (N)	P _{max} (kN)	$\begin{array}{c} \delta_{max} \\ (m) \end{array}$	W (kJ)
1	1	50	3.2	GS	149	64.29	1.37	18.25
	2				149	59.89	1.39	17.68
	3				155	57.48	1.40	16.15
2	1	100	3.2	GS	73	35.72	1.23	6.13
	2				74	41.25	1.16	7.66
	3				73	31.46	1.15	5.78
3	1	150	3.2	GS	53	26.29	1.05	3.96
	2				53	21.97	1.09	3.28
	3				51	21.83	1.12	3.68
4	1	50	2.0	GS	55	19.07	1.35	5.62
	2				59	24.31	1.33	6.25
	3				56	15.37	1.25	4.17
5	1	50	4.0	GS	227	82.44	1.10	23.93
	2				225	78.19	1.24	20.39

玉山國家公園南橫梅山口山坡崩塌裸露岩石區監測預警系統之規劃

	3				227	80.45	1.12	20.74
21	1	50	2.0	GH	59	24.73	1.34	5.73
	2				59	24.16	1.20	5.59
	3				59	24.95	1.43	6.20
41	1	40	3.2	GS	204	73.86	1.94	29.57
	2				202	76.91	1.96	30.77
	3				204	77.83	1.97	30.68
43	1	30	3.2	GS	235	90.23	2.28	45.45
	2				233	94.00	2.24	45.33
	3				233	97.05	2.24	44.96
44	1	30	2.6	GS	154	54.93	2.21	23.61
	2				154	63.29	2.32	26.21
	3				154	63.95	2.31	26.56
45	1	40	2.6	GS	137	50.11	2.01	17.74
	2				130	50.11	1.92	17.86
	3				129	55.24	1.92	17.47

圖 7-11(a) 菱形鋼網荷重-變位圖

圖 7-11(b) 環狀延伸鋼網荷重~變位圖

圖 7-11(a)為不同網目及線徑之菱形金屬網之荷重~變位關係 圖。一般而言,網目越小,線徑越大之菱形網其極限荷重能力越強(如 Case 5 之網目 50mm,線徑 4.0mm,鍍鋅(GS)鋼網有最大之極限強 度)。圖 7-11(b)為高消能延伸網之重~變位關係圖。為了比較上的 方便,該圖亦標示菱形鍍鋅鋼網(Case 1)之曲線。該圖亦顯示延伸網 在極限載重下具有菱形鍍鋅網 2 倍左右之延伸量。該圖顯示延伸網 具有較大之極限荷重,其原因可能來自於該試驗使用之延伸網自重 (129N-235N)大於菱形網(Case 1,自重 149N-155N)之故。若將 Case 1(149N-155N)與 Case 44,45(129N-154N)比較,則發現兩種網之極 限載重相近。圖 7-12 顯示兩種網之極限荷重強度與單位面積之重量 成正比關係。圖 7-13 顯示菱形網在極限荷重下之變位量小於延伸 網,但兩種網之極限變位置皆不受單位面積重量之影響,約略為一 定值。圖 7-14 比較兩種網之能量吸收量。該圖顯示兩種網之消能容 量約略與單位面積重量成正比,此外延伸網之消能容量約為菱形網 之 1.5 倍。

故柔性鋼圈高消能落石防護網於 1997 年左右引進於日本之邊 坡落石防災工程,至今,經過現地大型實驗,靜力加載實驗及實地 應用已證實其為一安全實用之工法。靜力加載試驗結果顯示,環狀 延伸網之落石能量吸收能力為傳統菱形網(梅山村邊坡岩層崩塌現 有防護網之設施,如圖 7-15)之 1.5 倍,且在大規模之落石消能防 護方面本工法可經由系統化元件之組裝與替換達到設計之標準化與 維護之經濟性考量。

圖 7-12 鋼網強度與單位重量之關係

圖 7-13 鋼網之極限變形量與單位重量之關係

圖 7-14 鋼網吸收能量與單位重之關係

圖 7-15 梅山村邊坡現有護網設施為傳統之菱形網

由第四章崩塌量之分析與測量得知梅山村邊坡岩層之崩塌落石 能量,因各斷面斜面坡度及高度之不同而有差異。

崩塌區:A-A 斷面之斜面坡度為 54°,高度 134.3m, 其落石能量 E 為 149.82 t-m,建議採用 RX-150 的柔性鋼圈高消能落 石防護網,柵欄高度 $h_e \ge 2.0 + 落石 直徑 D/2(其中崩塌區 D=1.0m),$ 故柵欄高度 h_e 取 3.0m,落石防護網設置長度約為 80m。

	長	間	高	廠商定價			建議預算價			
形式	度	距	度	饷 価	毎 m	每 m ²	饷 価	每m	每 m ²	
	m	m	m	總俱	價格	價格	總領	價格	價格	
			_							
RX-075	80	10	3	3100000	38000	12000	6200000	77000	25000	
DV 075	60	10	2	2280000	20000	12000	4770000	70000	26000	
KA-0/3	00	10	3	2380000	39000	13000	4770000	/9000	20000	
RX-150	80	10	3	4540000	56000	18000	9090000	113000	37000	
RX-150	60	10	3	3490000	58000	19000	6980000	116000	38000	
RX-200	80	10	4	7930000	99000	24000	15860000	198000	49000	
RX-200	60	10	4	6140000	102000	25000	12280000	204000	51000	

柔性鋼圈高消能落石防護網參考單價如下:(以 Geobrugg 廠牌為例)

第八章 結論與建議

- 一、梅山村(110K)位於梅山層主要由暗灰色至灰黑色頁岩或硬頁 岩組成,間夾有 5公分至 15公分厚之黃褐色至青灰色中至細 粒薄層砂岩互層,梅山村最常見的崩塌型式為岩塊掉落(Rock or debris fall),岩塊的大小可由小至幾公分至2或3公尺直徑 的大塊岩石。
- 二、原擋土牆採階級式混凝土塊體疊砌而成,似有緩慢突出變形之現象,經試驗分析結果擋土牆背填土表土下約 50cm 處之土壤內摩擦角¢=38.7°,凝聚力 C 值=2.2tf/m²,屬極硬實級配良好之稜角狀砂質粘土,為優良之擋土牆背填土,若須進一步了解是否夾有軟弱層,須進行地層鑽探與土壤試驗,因非本計畫經費所能配合,故須另行計畫做探討研究。
- 三、對於當地即時災害之預警系統之建置,可於邊坡地層或擋土設施中裝設土壓計、地中傾斜計、土中沈陷計、地盤傾斜計、水 位計及雨量計等等觀測儀器,藉由地層或擋土結構之應力或應 變情況,瞭解潛在落石邊坡及擋土牆設施之安全性,並配合在 崩塌區設置即時錄影預警系統,可提供居民即時預警通報資訊 ,亦可減少儀器誤判可能。
- 四、柔性鋼圈高消能落石防護網於 1997 年左右引進於日本之邊坡 落石防災工程,至今,經過現地大型實驗,靜力加載實驗及實 地應用已證實本工法可經由系統化元件之組裝與替換達到設 計之標準化與維護之經濟性考量,為一安全實用之工法。
- 五、在工程上,提供落石防護措施之參考,因有鑑於柔性鋼圈高消 能落石防護網之落石能量吸收能力為傳統菱形網的 1.5 倍,故 建議採用柔性鋼圈高消能落石防護網配合現地之落石能量加

49

以設置。

六、由梅山村邊坡岩塊掉落情況判定,建議採用平均直徑約為1.0m 之岩塊,在崩塌區之落石能量為150 t-m,建議設置1,500,000 焦耳(Joule)高消能防護網於梅山村西北側,高度採3.0m,設 置長度約為80m。

參考文獻

参考文獻

中文部份

- 內政部營建署玉山國家公園管理處 (1989)"玉山國家公園關山地區 地質調查南橫公路地質潛在危險區的研究分析",玉山國家公 園研究叢書 編號:1017。
- 內政部營建署玉山國家公園管理處 (2003)"玉山國家公園塔塔加、 東埔、梅山、天池地景地貌航空照相之建立",玉山國家公園 研究叢刊編號:1101,20-22頁。
- 王偉鍵 (2004)"加勁擋土牆耐震分析",國立成功大學土木工程研究 所碩士論文。
- 黃景川 (2002)"柔性高消能落石防護網柵在日本之應用",坡地安全 新技術研習會。
- 黃景川 (2002)"景觀式塊石加勁擋土牆之耐震行為",地工加勁結構 物概念設計研習會論文集,中華地工材料協會,pp.5-1~5-11。
- 黃景川、李振卿、許朝欽 (2002)"二仁溪上游崩塌地整治之應用研究",九十年度委託研究計畫成果發表及研討會論文集,經濟部水利署,pp. D23-D34。
- 李咸亨、范嘉程 (2002)"坡地社區安全工法及防災預警系統之研究 (一) 子計劃一:坡地住宅地區防災預警及通報系統之研究 成果報告",內政部建築研究所,計畫編號:091301070000G1014 。

外文部份

社團法人日本道路協會 (1983),落石對策便覽。

- 村石尚、加藤干典、佑溝昌彦 (1998) " 吸收型 落石防 護柵"鐵道總研報告, Vol.12, No.12, pp.35-40。
- 村石尚、佐溝昌彦 (2002)"柔構造 落石防護柵 性能評價 現地 適用", J. Japan Landslide Society, Vol.39, No.1,

pp.152-157 °

古賀泰之、門間敬一、井村俊則 (2002) "高 吸收 性落石防護柵 設計手法 "J. Japan Landslide Society,

51

Vol.39 , No.1 , pp.158-165 。

- 磯部賢治、井村俊則、下蚓和史、門間敬一 (2002) "高 吸收柵 設計•施工事例 "J. Japan Landslide Society, Vol.39, No.1, pp.166-175。
- Huang, C. C. (2000) "Investigations of soil retaining structures damaged during the Chi-Chi(Taiwan) earthquake", Journal of the Chinese Institute of Engineers, Vol. 23,No. 4, pp.417-428 °

附錄一 報告審查會議記錄

玖、散會

附錄二 報告審查意見回覆情形

- 壹、時間:中華民國九十三年十二月二十三日(星期四)下午三時 三十分
- 貳、地點:本處三樓會議室 紀錄:楊舜行
- 參、主持人:林處長青(陳副處長隆陞代)
- 肆、出(列)席單位及人員:(如簽到單影本)
- 伍、主席致詞:(略)
- 陸、主辦課報告:(略)
- 柒、委託機構(財團法人成大研究發展基金會黃教授景川)簡報:(略)

捌、審查意見:

建議事項	處理情形
本案就南横梅山口山坡崩塌裸露岩石	谢谢指教。
區進行有關崩塌量測量、擋土牆安全分	
析以及崩塌地整治工法之建議,提供管	
理處瞭解該地區所處之地質與崩塌狀	
況,值得肯定。	
本處將提供原擋土牆設計圖供參,並請	已在期末報告中依委員
修正擋土牆第三階面版的變位部分之	建議修正。
結論。	
本報告若可能請針對七二水災前後之	已在期末報告中依委員
雨量與該裸露岩石區邊坡受影響狀況	建議說明。
說明之。另請將踏勘日期與紀錄現地狀	
況再加以陳述說明。	
本報告提出崩塌地整治工法之建議,係	已在報告中依委員建議
為崩塌地防護措施之規劃,缺乏監測預	作補充。
警系統之說明與作為,建議另加一章節	
補充探討本區域進行監測預警系統之	
規劃方向。	
報告中有關 B 區裸露區之崩塌量分析	已在報告中依委員建議
與測量等內容,建議刪除。	刪除。
請修正本報告結論與建議之內容,增加	已在期末報告中依委員
補充本區域監測預警系統可行性規劃	建議修正。
方向之建議。	
報告中各圖表若為彩色,則請繳交報告	遵照規定辦理。
時以彩色印製,並依照本處結案報告之	
封面格式製作及範例格式撰寫正式報	
告書,再依契約書規定,連同正式報告	
書、光碟等資料函送本處認可後辦理結	
案及付款事宜。	

期末報告審查意見處理對照表

玖、散會

56